Core Mathematics 3 Paper D
 1. (i) Show that

$$
\sin (x+30)^{\circ}+\sin (x-30)^{\circ} \equiv a \sin x^{\circ},
$$

where a is a constant to be found.
(ii) Hence find the exact value of $\sin 75^{\circ}+\sin 15^{\circ}$, giving your answer in the form $b \sqrt{6}$.
2. Solve each equation, giving your answers in exact form.
(i) $\quad \ln (2 x-3)=1$
(ii) $3 \mathrm{e}^{y}+5 \mathrm{e}^{-y}=16$
3. The curve C has the equation $y=2 \mathrm{e}^{x}-6 \ln x$ and passes through the point P with x-coordinate 1 .
(i) Find an equation for the tangent to C at P.

The tangent to C at P meets the coordinate axes at the points Q and R.
(ii) Show that the area of triangle $O Q R$, where O is the origin, is $\frac{9}{3-\mathrm{e}}$.
4. The finite region R is bounded by the curve with equation $y=\frac{1}{2 x-1}$, the x-axis and the lines $x=1$ and $x=2$.
(i) Find the exact area of R.
(ii) Show that the volume of the solid formed when R is rotated through four right angles about the x-axis is $\frac{1}{3} \pi$.
5.

The diagram shows the graph of $y=\mathrm{f}(x)$. The graph has a minimum at $\left(\frac{\pi}{2},-1\right)$, a maximum at $\left(\frac{3 \pi}{2},-5\right)$ and an asymptote with equation $x=\pi$.
(i) Showing the coordinates of any stationary points, sketch the graph of $y=|\mathrm{f}(x)|$. [2]

Given that

$$
\mathrm{f}: x \rightarrow a+b \operatorname{cosec} x, \quad x \in \mathbb{R}, \quad 0<x<2 \pi, \quad x \neq \pi
$$

(ii) find the values of the constants a and b,
(iii) find, to 2 decimal places, the x-coordinates of the points where the graph of $y=\mathrm{f}(x)$ crosses the x-axis.
6. (i) Prove the identity

$$
\begin{equation*}
2 \cot 2 x+\tan x \equiv \cot x, \quad x \neq \frac{n}{2} \pi, \quad n \in \mathbb{Z} \tag{5}
\end{equation*}
$$

(ii) Solve, for $0 \leq x<\pi$, the equation

$$
\begin{equation*}
2 \cot 2 x+\tan x=\operatorname{cosec}^{2} x-7 \tag{6}
\end{equation*}
$$

giving your answers to 2 decimal places.
7. The function f is defined by

$$
\mathrm{f}: x \rightarrow 3 \mathrm{e}^{x-1}, \quad x \in \mathbb{R}
$$

(i) State the range of f .
(ii) Find an expression for $\mathrm{f}^{-1}(x)$ and state its domain.

The function g is defined by

$$
\mathrm{g}: x \rightarrow 5 x-2, \quad x \in \mathbb{R} .
$$

Find, in terms of e,
(iii) the value of $\operatorname{gf}(\ln 2)$,
(iv) the solution of the equation

$$
\begin{equation*}
\mathrm{f}^{-1} \mathrm{~g}(x)=4 \tag{4}
\end{equation*}
$$

8. A curve has the equation $y=x^{2}-\sqrt{4+\ln x}$.
(i) Show that the tangent to the curve at the point where $x=1$ has the equation

$$
\begin{equation*}
7 x-4 y=11 \tag{5}
\end{equation*}
$$

The curve has a stationary point with x-coordinate α.
(ii) Show that $0.3<\alpha<0.4$
(iii) Show that α is a solution of the equation

$$
\begin{equation*}
x=\frac{1}{2}(4+\ln x)^{-\frac{1}{4}} . \tag{2}
\end{equation*}
$$

(iv) Use the iterative formula

$$
x_{n+1}=\frac{1}{2}\left(4+\ln x_{n}\right)^{-\frac{1}{4}},
$$

with $x_{0}=0.35$, to find α correct to 5 decimal places.
You should show the result of each iteration.

